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The Neyman type A distribution, a generalized, “contagious”, Poisson distribution
finds application in a number of disciplines such as biology, physics and economy. It
was first described by Jerzy Neyman in 1939 (Neyman 1939). In radiation biology it
best describes the distribution of chromosomal aberrations in cells that were exposed to
neutrons, alpha radiation or heavy ions.

We have developed a freeware program for calculating the 95% confidence limits of
Neyman type A-distributed events. The program can be downloaded here. The algorithm
is based on the frequentist method published by Jerzy Neyman (1939). Although it has
been developed in response to the requirements of radiation biology, it can find application
in other fields of research.

Following entry of the distribution the user presses the COUNT button. NETA verifies
if the distribution is Poissonian by the u-test as described by Edwards et al. (1979). In the
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case of a Poissonian distribution the 95% confidence limits (LCL - lower confidence limit
and UCL - upper confidence limit) are calculated for a Poisson distribution as described
by Deperas et al. (2007). When the distribution is not Poissonian NETA verifies if it
is a Neyman type A distribution by performing a chi-square goodness-of-fit test. The
confidence limits are calculated when the distribution is a Neyman type A. Otherwise an
error message is displayed. In addition to the confidence limits NETA also gives some
information about the statistics of the entered distribution. The entered data can be
saved and files can be opened. The CLEAR DATA button is used to delete the data:
NETA is now ready to perform a new calculation.
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